skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Walteros, Jose L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    To this day, the maximum clique problem remains a computationally challenging problem. Indeed, despite researchers’ best efforts, there exist unsolved benchmark instances with 1,000 vertices. However, relatively simple algorithms solve real-life instances with millions of vertices in a few seconds. Why is this the case? Why is the problem apparently so easy in many naturally occurring networks? In this paper, we provide an explanation. First, we observe that the graph’s clique number ω is very near to the graph’s degeneracy d in most real-life instances. This observation motivates a main contribution of this paper, which is an algorithm for the maximum clique problem that runs in time polynomial in the size of the graph, but exponential in the gap [Formula: see text] between the clique number ω and its degeneracy-based upper bound d+1. When this gap [Formula: see text] can be treated as a constant, as is often the case for real-life graphs, the proposed algorithm runs in time [Formula: see text]. This provides a rigorous explanation for the apparent easiness of these instances despite the intractability of the problem in the worst case. Further, our implementation of the proposed algorithm is actually practical—competitive with the best approaches from the literature. 
    more » « less